Accessing Imbalance Learning Using Dynamic Selection Approach in Water Quality Anomaly Detection
نویسندگان
چکیده
منابع مشابه
Hybrid Negative Selection Approach for Anomaly Detection
This paper describes b-v model which is enhanced version of the negative selection algorithm (NSA). In contrast to formerly presented approaches, binary and real-valued detectors are incorporated. The reason behind developing this hybrid is willingness to overcome the scalability problems, which are a key problem, when only one type of detectors is used. Although high-dimensional datasets are a...
متن کاملInterest point detection using imbalance oriented selection
Interest point detection has a wide range of applications, such as image retrieval and object recognition. Given an image, many previous interest point detectors first assign interest strength to each image point using a certain filtering technique, and then apply non-maximum suppression scheme to select a set of interest point candidates. However, we observe that non-maximum suppression tends ...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملA Machine Learning Approach to Anomaly Detection
Much of the intrusion detection research focuses on signature (misuse) detection, where models are built to recognize known attacks. However, signature detection, by its nature, cannot detect novel attacks. Anomaly detection focuses on modeling the normal behavior and identifying significant deviations, which could be novel attacks. In this paper we explore two machine learning methods that can...
متن کاملAnomaly Detection Using Neighborhood Negative Selection
Negative Selection Algorithms (NSAs) have been widely used in anomaly detection. As the security issue becomes more complex, more and more anomaly detection schemes involve high-dimension data. NSAs however perform poorly on effectiveness and efficiency when dealing with high-dimension data. To address these issues, we propose a Neighborhood Negative Selection (NNS) algorithm in this paper. Ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: 2073-8994
DOI: 10.3390/sym13050818